Negative differential resistance in bilayer graphene nanoribbons
نویسندگان
چکیده
منابع مشابه
Visualizing atomic-scale negative differential resistance in bilayer graphene.
We investigate the atomic-scale tunneling characteristics of bilayer graphene on silicon carbide using the scanning tunneling microscopy. The high-resolution tunneling spectroscopy reveals an unexpected negative differential resistance (NDR) at the Dirac energy, which spatially varies within the single unit cell of bilayer graphene. The origin of NDR is explained by two near-gap van Hove singul...
متن کاملQuantum dot behavior in bilayer graphene nanoribbons.
Bilayer graphene has recently earned great attention for its unique electronic properties and commendable use in electronic applications. Here, we report the observation of quantum dot (QD) behaviors in bilayer graphene nanoribbons (BL-GNRs). The periodic Coulomb oscillations indicate the formation of a single quantum dot within the BL-GNR because of the broad distribution function of the carri...
متن کاملNegative Differential Thermal Conductance in Graphene Nanoribbons: Toward Graphene Thermal Circuits
Graphene has received much attention due to its remarkable electronic properties. It also has exceptional thermal properties, such as an unusually high thermal conductivity. Understanding thermal transport of graphene is of great importance to the applications for future graphene‐based devices in energy efficient nanoelectronics. We have calculated the thermal current of symmetric...
متن کاملStacking dependent electronic structure and transport in bilayer graphene nanoribbons
The stacking-dependent electronic structure and transport properties of bilayer graphene nanoribbons suspended between gold electrodes are investigated using density functional theory coupled with non-equilibrium Green’s functional method. We find substantially enhanced electron transmission as well as tunneling currents in the AA stacking of bilayer nanoribbons compared to either single-layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2011
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3590772